• Users Online: 106
  • Home
  • Print this page
  • Email this page
Home Current issue Archives Ahead of print Search Subscribe Instructions Submit article About us Editorial board Contacts Login 
ORIGINAL ARTICLE
Year : 2021  |  Volume : 42  |  Issue : 3  |  Page : 139-147

Electrophysiological and psychophysical testing in children with attention-deficit hyperactivity disorder


1 Department of Neuropsychiatry, Otolaryngology, Faculty of Medicine, Tanta University, Tanta, Egypt
2 Audiovestibular Medicine, Department of Audiology Otolaryngology, Faculty of Medicine, Tanta University, Tanta, Egypt

Correspondence Address:
MD Shereen D. Abo Hammer
Department of Neuropsychiatry, Faculty of Medicine, Tanta University, Tanta, 31527
Egypt
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ejpsy.ejpsy_12_21

Rights and Permissions

Background Multiple techniques are used for understanding, determining the real pathophysiological process, and treating attention-deficit hyperactivity disorder (ADHD). The aim of this study was to assess cortical auditory evoked potentials (CAEP) as well as P300 in children with ADHD, and its correlation with neurocognitive tests [Wisconsin card sorting test (WCST), digit span (DS), and Stroop test (ST)]. Patients and methods A prospective cross-sectional study was performed on 103 children, who were divided into two groups: 53 children newly diagnosed with ADHD (according to Diagnostic and statistical manual of mental disorders, 5th ed.), who were drug naïve, and 50 normal control matched for age, sex, educational and social level, and intelligence quotient. All participants had detailed psychiatric history, intelligence quotient Wechsler intelligence scale for children (WICS), Conners’ parent/teacher rating scale abbreviated form for ADHD, neuropsychological tests (WCST and Stroop), pure tone audiometry, speech audiometry using GSI 61 audiometer, immittance test using interacoustic, and sustained attention test using auditory continuous performance test (ACPT) P300. Results Children with ADHD had more perseverative responses, more preservative errors, and more failure to maintain set (FMS) than controls in WCST, with a significant difference among study groups. ADHD group was impaired in digit span backward and ST than control group. P300 amplitude and latency were significantly different between the study groups. In comparison with the control group, statistical delayed latencies of significance were observed in ADHD between all CAEP components. A significant difference for P1-N1 amplitude was observed among different components of CAEP, and no significance was observed regarding P2-N2 amplitude. ACPT showed a significant difference between both groups, with higher percentage in control group. Positive correlations were observed between P300 amplitude and WCST (perseverative error), P300 amplitude and ST results, and N2 latency and DS backward. Conclusion Assessment of CAEPs and P300 in children with ADHD, as well as their correlation with neurocognitive tests (WCST, DS, and ST), is crucial in diagnosis and management.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed120    
    Printed0    
    Emailed0    
    PDF Downloaded16    
    Comments [Add]    

Recommend this journal